Enhancement of the green, visible Tb$^{3+}$ luminescence from Tb-doped silicon-rich silicon oxide by C co-doping

Se-Young Seoa) and Jung H. Shin
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, Korea

(Received 27 October 2003; accepted 12 April 2004; published online 12 May 2004)

The effect of C co-doping on the Tb$^{3+}$ luminescence from Tb-doped silicon-rich silicon oxide (SRSO) films is investigated. Tb-doped SRSO films co-doped with C (SRSO:C) were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition. The Tb$^{3+}$ photoluminescence intensity is enhanced by the presence of nanocluster Si (nc-Si), and C co-doping further increases the Tb$^{3+}$ photoluminescence intensity by more than an order of magnitude. The maximum enhancement is observed at the C content of ~5 at. %, at which the Tb$^{3+}$ luminescence is bright enough to be observed by the naked eye under ambient conditions. The 543 nm Tb$^{3+}$ lifetimes were in the range of 0.5–1.2 ms, comparable to those from Tb-doped silica. Based on the results, we conclude that nanometer-sized nc-Si can excite Tb$^{3+}$ ions via an Auger-type energy transfer, and that C co-doping greatly increases the efficiency of such exciton-mediated excitation of Tb$^{3+}$.

Enhancement of the green, visible Tb$^{3+}$ luminescence from Tb-doped silicon-rich silicon oxide by C co-doping

Ever since the report on the visible photoluminescence (PL) from porous Si,1 the luminescence from nanocluster Si (nc-Si) has been the subject of prolonged and intense investigations.2 In particular, silicon-rich silicon oxide (SRSO), which consists of nc-Si embedded inside an SiO$_2$ matrix, has attracted particular attention due to its robustness and compatibility with Si processing technologies.3 By now, light emitting diodes4 and the possibility of optical gain5 using SRSO have been reported. However, the SRSO luminescence is centered in the near IR range even with nanometer-sized nc-Si, and obtaining visible luminescence from nc-Si has proved to be difficult.6 Furthermore, the luminescence peak was reported to be very broad even with a single nc-Si.7

An interesting alternative to obtaining sharp luminescence is rare-earth (RE) doping. In such a case, RE ions are excited via an energy transfer from the host matrix,8 and visible luminescence can be obtained if the band gap of the host matrix is wide enough.9 Yet due to the above-discussed limitations, only IR RE luminescence has been demonstrated from RE-doped SRSO10 even though obtaining visible luminescence from silicon-based material such as SRSO remains an important technological challenge. Recently, we reported that SRSO co-doped with carbon (SRSO:C) displays strong blue-white PL.11 In this letter, we report on the effect of C co-doping on the Tb$^{3+}$ PL from Tb-doped SRSO. Tb$^{3+}$ was chosen because it has a strong luminescence peak near 543 nm, very close to the primary color standard for green adopted by the U.S. Federal Communications Commission. We find that Tb$^{3+}$ can be excited via an Auger-type interaction with nc-Si, and that C co-doping greatly enhances the Tb$^{3+}$ PL intensity such that the Tb$^{3+}$ luminescence can be seen by the naked eye under ambient conditions. The 543 nm Tb$^{3+}$ PL lifetimes were in the range of 0.5–1.2 ms, comparable to those from Tb-doped silica. The results support recent reports that the band gap of nanometer-sized nc-Si in SRSO is much wider than indicated by its luminescence,12,13 and indicates that C co-doping greatly increases the efficiency of such exciton-mediated excitation of Tb$^{3+}$. The implications of the results on developing Si-based luminescent material in the visible range are also discussed.

Tb-doped SRSO:C films were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH$_4$, CH$_4$, and O$_2$ with concurrent sputtering of Tb. The detailed procedure of film fabrication can be found in Refs. 11 and 14. After deposition, the films were annealed at 950 °C for 5 min under Ar environment in order to precipitate nc-Si, and hydrogenated by anneal at 700 °C for 1 h flowing forming gas (10% H$_2$ + 90% N$_2$). The composition of the films was determined by Rutherford backscattering spectroscopy and wavelength dispersion x-ray spectroscopy. The Si and C contents were in the range of 34–41 at. % and 0–10.4 at. %, respectively, but the film thickness and the Tb content was fixed at 1.4–10.4 at. %, respectively, and the Si content was increased to below 34 at. %. The dependence of the Tb$^{3+}$ PL intensity on the Si content is summarized in the inset.

Figure 1 shows PL spectra of Tb-doped, carbon-free SRSO films. We observe a weak background luminescence, most likely due to oxide defects, whose intensity oscillates due to multiple reflections. However, within a narrow range of Si content between 35 and 37 at. %, a PL peak at 543 nm due to $^5D_4 \rightarrow ^7F_5$ transition of Tb$^{3+}$ is clearly observable. However, no Tb$^{3+}$ PL can be observed when the Si content is decreased to below 34 at. %. The dependence of the Tb$^{3+}$ PL intensity on the Si content is summarized in the inset.

Figure 2 shows the effect of C co-doping on the PL spectra of Tb-doped SRSO whose Si content was fixed at 35 at. %. We observe a broad luminescence in the range of 400–
700 nm due to the SRSO:C matrix. Superimposed on the intrinsic SRSO:C luminescence is Tb$^{3+}$ luminescence peaks at 543 nm. Other intra-4f transitions such as the $^5D_4 \rightarrow ^7F_6$ and 7F_4 intra-4f transitions with peaks at 487 and 588 nm are possible, but are difficult to discern due to interference by internal reflection. Both the SRSO:C and Tb$^{3+}$ luminescence increase as the C content increases. The dependence of the Tb$^{3+}$ and the intrinsic SRSO:C PL intensity is summarized in the inset. We find that they are well correlated. The maximum intensity of both the Tb$^{3+}$ and the SRSO:C PL is obtained at a C content of 4.5 at. % at which the Tb$^{3+}$ PL is nearly 30 times stronger than that from the film with no C.

Figure 3 shows PL spectra of films with Si content of 35 at. %, C content of 10 at. %, and with Tb content of 0.1 and 0.4 at. %. We find that increasing the Tb content increases the green, 543 nm Tb$^{3+}$ PL intensity while at the same time suppressing the intrinsic SRSO:C luminescence. The inset shows the camera images of the films taken under ambient conditions. The film with 0.1 at. % Tb$^{3+}$ luminesces bluish white due to the strong intrinsic SRSO:C luminescence. The film with 0.4 at. % Tb, on the other hand, luminesces green due to the relative increase in the Tb$^{3+}$ PL intensity.

Figure 4 shows the time-resolved decay traces of the 543 nm Tb$^{3+}$ luminescence. Since the Tb$^{3+}$ luminescence is superimposed on the SRSO:C host luminescence that has a very fast luminescence lifetime limited by the system response (10 μs), the Tb$^{3+}$ PL decay traces were isolated by deleting the fast initial decay that appears after the pump beam is turned off. We find that the Tb$^{3+}$ lifetime from carbon-free SRSO is 1.2 ms. The Tb$^{3+}$ PL lifetime decreases with increasing C content, reaching a value of 0.5 ms at a C content of 11 at. %.

Such values for Tb$^{3+}$ PL lifetimes, and the luminescence characteristics overall, are similar to that of Tb-doped SiO$_2$, except for the fact that we observe luminescence even though the excitation beam of 325 nm is not absorbed by Tb$^{3+}$ ions. However, such nonresonant excitation of RE ions in SRSO, and the suppression of the intrinsic SRSO luminescence by RE co-doping as shown in Fig. 3, are well-documented for RE ions luminescent in the IR range, and explained by Auger-type excitation of RE ions by non-radiative decay of excitons. In the following, we will discuss the extendability of such excitation model to the visible Tb$^{3+}$ luminescence, and the role of carbon in enhancing it.

Extending the exciton-mediated excitation model to Tb-doped SRSO may seem problematic, since the SRSO luminescence is limited to the IR range even when nanometer-sized nc-Si formed by using a very low excess Si content, while 2.5–3.5 eV is required for excitation of Tb$^{3+}$. However, recent results indicate that the IR luminescence from
SRSO is due to oxygen-related surface states, and that the actual band gap of nanometer-sized nc-Si may be as large as 4 eV,12,13 sufficient to excite Tb3+. The composition dependence of Tb3+ luminescence shown in Fig. 1 supports such results, since it indicates that small enough nc-Si has wide enough band gap to be able to excite Tb3+ even though it luminesces in the IR range. We note that excitons trapped at oxide defects may also be able to excite Tb3+ ions. However, the fact that we do not observe Tb3+ PL from the SRSO film with Si content of 34.2 at.% even though it, too, displays defect luminescence suggests that such defect-mediated excitation mechanism is not very efficient.

Furthermore, the fact that the Tb3+ PL lifetime from Tb-doped SRSO is comparable to that from Tb-doped SiO\textsubscript{2} suggests that the Tb3+ luminescence efficiency in SRSO is quite high. Yet the Tb3+ PL intensity from C-free SRSO is quite low, indicating that the efficiency of such nc-Si mediated excitation of Tb3+ ions in C-free SRSO is very low. We attribute such low excitation efficiency to the wide distribution of the nc-Si size and the competitive formation of oxygen-related, low-energy excitons.

Thus, in order to increase the Tb3+ luminescence, it is necessary to promote formation of high-energy excitons that can excite Tb3+. And such is precisely the role of carbon, as the increase in the visible luminescence by C co-doping and the close correlation between the increase in the SRSO:C and Tb3+ luminescence demonstrate. Furthermore, the fact that the reduction in the Tb3+ PL lifetime due to C co-doping is less than 20% indicates that C co-doping enhances the Tb3+ excitation without significantly reducing the Tb3+ luminescence efficiency. The exact reason for such enhancement is not yet clear. It is possible that the C increases the formation of very small nc-Si by acting as nucleation sites. We note, however, that without C co-doping, there still remains the problem of competitive formation of oxygen-related low-energy excitons. Thus, C co-doping most likely increases the effective coupling coefficient between high-energy excitons and Tb3+ ions as well. Further investigations on this subject are currently under way.

Finally, note that Fig. 3 indicates that the overall luminescence spectra can be tailored by controlling the C and Tb3+ concentrations. This suggests the feasibility that other RE ions, such as Er, Tm, and Eu, may also be used as visible optical dopant for SRSO:C, as has been demonstrated for GaN,8 and that by combining them, light emitters for the whole visible range may be integrated on a single Si substrate.18

In conclusion, we have investigated the effect of C co-doping on Tb3+ luminescence from Tb-doped SRSO. We find that Tb3+ can be excited via an Auger-type interaction with nc-Si, and that C co-doping greatly enhances the Tb3+ PL intensity such that the Tb3+ luminescence can be seen by the naked eye under ambient conditions. The results support recent reports that the band gap of nanometer-sized nc-Si in SRSO is much wider than indicated by its luminescence,12,13 and indicates that C co-doping greatly increases the efficiency of such exciton-mediated excitation of Tb3+.

This work is supported by National Research Laboratory Project of MOST in Korea.